A true man can play a palo one hundred time

点击此处获得更好的阅读体验


WriteUp 来源

https://xz.aliyun.com/t/1589

题目考点

解题思路

题目说明

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Question
Now you have a balance palo.
You can move it left or right.
Just play hundred time on it.

Description
Get request receive two params
1. move, 0 or 1
2. id, just your token
Observation

1. pole position x
2. a value depend on x
3. pole deviate from center θ
4. a value depend on θ
Why you failed
θ or x > a certain value

总而言之就是个玩棒子的游戏(雾。 之所以出现在最后一道请去问关卡规则的设计者。 因为ctf本来不应该出现这种问题,所以我有意把这题设计得简单了一点,但是,ctf真是不讲道理,也导致这道题被少量非预期。

其实就是一个非常非常简单的强化学习的问题,甚至不需要强化学习去解。

DQN网络结构定义

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import numpy as np
import tensorflow as tf
import requests
import math

class DeepQNetwork:
def __init__(
self,
n_actions,
n_features,
learning_rate=0.01,
reward_decay=0.9,
e_greedy=0.9,
replace_target_iter=300,
memory_size=500,
batch_size=32,
e_greedy_increment=None,
output_graph=False,
):
self.n_actions = n_actions
self.n_features = n_features
self.lr = learning_rate
self.gamma = reward_decay
self.epsilon_max = e_greedy
self.replace_target_iter = replace_target_iter
self.memory_size = memory_size
self.batch_size = batch_size
self.epsilon_increment = e_greedy_increment
self.epsilon = 0 if e_greedy_increment is not None else self.epsilon_max

# total learning step
self.learn_step_counter = 0

# initialize zero memory [s, a, r, s_]
self.memory = np.zeros((self.memory_size, n_features * 2 + 2))

# consist of [target_net, evaluate_net]
self._build_net()
t_params = tf.get_collection('target_net_params')
e_params = tf.get_collection('eval_net_params')
self.replace_target_op = [tf.assign(t, e) for t, e in zip(t_params, e_params)]

self.sess = tf.Session()

if output_graph:
# $ tensorboard --logdir=logs
# tf.train.SummaryWriter soon be deprecated, use following
tf.summary.FileWriter("logs/", self.sess.graph)

self.sess.run(tf.global_variables_initializer())
self.cost_his = []

def _build_net(self):
# ------------------ build evaluate_net ------------------
self.s = tf.placeholder(tf.float32, [None, self.n_features], name='s') # input
self.q_target = tf.placeholder(tf.float32, [None, self.n_actions], name='Q_target') # for calculating loss
with tf.variable_scope('eval_net'):
# c_names(collections_names) are the collections to store variables
c_names, n_l1, w_initializer, b_initializer = \
['eval_net_params', tf.GraphKeys.GLOBAL_VARIABLES], 10, \
tf.random_normal_initializer(0., 0.3), tf.constant_initializer(0.1) # config of layers

# first layer. collections is used later when assign to target net
with tf.variable_scope('l1'):
w1 = tf.get_variable('w1', [self.n_features, n_l1], initializer=w_initializer, collections=c_names)
b1 = tf.get_variable('b1', [1, n_l1], initializer=b_initializer, collections=c_names)
l1 = tf.nn.relu(tf.matmul(self.s, w1) + b1)

# second layer. collections is used later when assign to target net
with tf.variable_scope('l2'):
w2 = tf.get_variable('w2', [n_l1, self.n_actions], initializer=w_initializer, collections=c_names)
b2 = tf.get_variable('b2', [1, self.n_actions], initializer=b_initializer, collections=c_names)
self.q_eval = tf.matmul(l1, w2) + b2

with tf.variable_scope('loss'):
self.loss = tf.reduce_mean(tf.squared_difference(self.q_target, self.q_eval))
with tf.variable_scope('train'):
self._train_op = tf.train.RMSPropOptimizer(self.lr).minimize(self.loss)

# ------------------ build target_net ------------------
self.s_ = tf.placeholder(tf.float32, [None, self.n_features], name='s_') # input
with tf.variable_scope('target_net'):
# c_names(collections_names) are the collections to store variables
c_names = ['target_net_params', tf.GraphKeys.GLOBAL_VARIABLES]

# first layer. collections is used later when assign to target net
with tf.variable_scope('l1'):
w1 = tf.get_variable('w1', [self.n_features, n_l1], initializer=w_initializer, collections=c_names)
b1 = tf.get_variable('b1', [1, n_l1], initializer=b_initializer, collections=c_names)
l1 = tf.nn.relu(tf.matmul(self.s_, w1) + b1)

# second layer. collections is used later when assign to target net
with tf.variable_scope('l2'):
w2 = tf.get_variable('w2', [n_l1, self.n_actions], initializer=w_initializer, collections=c_names)
b2 = tf.get_variable('b2', [1, self.n_actions], initializer=b_initializer, collections=c_names)
self.q_next = tf.matmul(l1, w2) + b2

def store_transition(self, s, a, r, s_):
if not hasattr(self, 'memory_counter'):
self.memory_counter = 0

transition = np.hstack((s, [a, r], s_))

# replace the old memory with new memory
index = self.memory_counter % self.memory_size
self.memory[index, :] = transition

self.memory_counter += 1

def choose_action(self, observation):
# to have batch dimension when feed into tf placeholder
observation = observation[np.newaxis, :]

if np.random.uniform() < self.epsilon:
# forward feed the observation and get q value for every actions
actions_value = self.sess.run(self.q_eval, feed_dict={self.s: observation})
action = np.argmax(actions_value)
else:
action = np.random.randint(0, self.n_actions)
return action

def learn(self):
# check to replace target parameters
if self.learn_step_counter % self.replace_target_iter == 0:
self.sess.run(self.replace_target_op)
print('\\ntarget_params_replaced\\n')

# sample batch memory from all memory
if self.memory_counter > self.memory_size:
sample_index = np.random.choice(self.memory_size, size=self.batch_size)
else:
sample_index = np.random.choice(self.memory_counter, size=self.batch_size)
batch_memory = self.memory[sample_index, :]

q_next, q_eval = self.sess.run(
[self.q_next, self.q_eval],
feed_dict={
self.s_: batch_memory[:, -self.n_features:], # fixed params
self.s: batch_memory[:, :self.n_features], # newest params
})

# change q_target w.r.t q_eval's action
q_target = q_eval.copy()

batch_index = np.arange(self.batch_size, dtype=np.int32)
eval_act_index = batch_memory[:, self.n_features].astype(int)
reward = batch_memory[:, self.n_features + 1]

q_target[batch_index, eval_act_index] = reward + self.gamma * np.max(q_next, axis=1)

# train eval network
_, self.cost = self.sess.run([self._train_op, self.loss],
feed_dict={self.s: batch_memory[:, :self.n_features],
self.q_target: q_target})
self.cost_his.append(self.cost)

# increasing epsilon
self.epsilon = self.epsilon + self.epsilon_increment if self.epsilon < self.epsilon_max else self.epsilon_max
self.learn_step_counter += 1

学习迭代

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
x_threshold = 2.4
theta_threshold_radians = 1/15*math.pi

RL = DeepQNetwork(n_actions=2,
n_features=4,
learning_rate=0.01, e_greedy=0.9,
replace_target_iter=100, memory_size=2000,
e_greedy_increment=0.001,)

total_steps = 0

for i_episode in range(100):
json_req = requests.get(url=url, params={'id': token, 'move': 0}).json()
observation = json_req['observation']
ep_r = 0

while True:
action = RL.choose_action(np.array(observation))

json_req = requests.get(url=url, params={'id': token, 'move': action}).json()
try: observation_ = json_req['observation']
except KeyError:
pass
print(observation)
done = not json_req['status']

# the smaller theta and closer to center the better
x, x_dot, theta, theta_dot = observation_
r1 = (x_threshold - abs(x))/x_threshold - 0.8
r2 = (theta_threshold_radians - abs(theta))/theta_threshold_radians - 0.5
reward = r1 + r2

RL.store_transition(observation, action, reward, observation_)

ep_r += reward
if total_steps > 1000:
RL.learn()

if done:
count = json_req['count']
if count == 100:
print(json_req['flag'])
else:
print('count:', json_req['count'])
break

observation = observation_
total_steps += 1

Flag

1