点击此处获得更好的阅读体验
WriteUp来源
题目描述
题目考点
解题思路
本题与 AES 相似, 需要利用 CPU 上 SHA2 指令集扩展. 并且同时需要使用 OpenMP 进行并行, 充分利用服务器上 48 个核心.
一个简单的实例hash.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
/* GCC and LLVM Clang, but not Apple Clang */
static const uint32_t K[] =
{
0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,
0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,
0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,
0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,
0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,
0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
};
/* Process multiple blocks. The caller is responsible for setting the initial */
/* state, and the caller is responsible for padding the final block. */
void sha256_process_arm(uint32_t state[8], const uint8_t data[], uint32_t length)
{
uint32x4_t STATE0, STATE1, ABEF_SAVE, CDGH_SAVE;
uint32x4_t MSG0, MSG1, MSG2, MSG3;
uint32x4_t TMP0, TMP1, TMP2;
/* Load state */
STATE0 = vld1q_u32(&state[0]);
STATE1 = vld1q_u32(&state[4]);
while (length >= 64)
{
/* Save state */
ABEF_SAVE = STATE0;
CDGH_SAVE = STATE1;
/* Load message */
MSG0 = vld1q_u32((const uint32_t *)(data + 0));
MSG1 = vld1q_u32((const uint32_t *)(data + 16));
MSG2 = vld1q_u32((const uint32_t *)(data + 32));
MSG3 = vld1q_u32((const uint32_t *)(data + 48));
/* Reverse for little endian */
MSG0 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(MSG0)));
MSG1 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(MSG1)));
MSG2 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(MSG2)));
MSG3 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(MSG3)));
TMP0 = vaddq_u32(MSG0, vld1q_u32(&K[0x00]));
/* Rounds 0-3 */
MSG0 = vsha256su0q_u32(MSG0, MSG1);
TMP2 = STATE0;
TMP1 = vaddq_u32(MSG1, vld1q_u32(&K[0x04]));
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
MSG0 = vsha256su1q_u32(MSG0, MSG2, MSG3);
/* Rounds 4-7 */
MSG1 = vsha256su0q_u32(MSG1, MSG2);
TMP2 = STATE0;
TMP0 = vaddq_u32(MSG2, vld1q_u32(&K[0x08]));
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP1);
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP1);
MSG1 = vsha256su1q_u32(MSG1, MSG3, MSG0);
/* Rounds 8-11 */
MSG2 = vsha256su0q_u32(MSG2, MSG3);
TMP2 = STATE0;
TMP1 = vaddq_u32(MSG3, vld1q_u32(&K[0x0c]));
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
MSG2 = vsha256su1q_u32(MSG2, MSG0, MSG1);
/* Rounds 12-15 */
MSG3 = vsha256su0q_u32(MSG3, MSG0);
TMP2 = STATE0;
TMP0 = vaddq_u32(MSG0, vld1q_u32(&K[0x10]));
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP1);
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP1);
MSG3 = vsha256su1q_u32(MSG3, MSG1, MSG2);
/* Rounds 16-19 */
MSG0 = vsha256su0q_u32(MSG0, MSG1);
TMP2 = STATE0;
TMP1 = vaddq_u32(MSG1, vld1q_u32(&K[0x14]));
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
MSG0 = vsha256su1q_u32(MSG0, MSG2, MSG3);
/* Rounds 20-23 */
MSG1 = vsha256su0q_u32(MSG1, MSG2);
TMP2 = STATE0;
TMP0 = vaddq_u32(MSG2, vld1q_u32(&K[0x18]));
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP1);
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP1);
MSG1 = vsha256su1q_u32(MSG1, MSG3, MSG0);
/* Rounds 24-27 */
MSG2 = vsha256su0q_u32(MSG2, MSG3);
TMP2 = STATE0;
TMP1 = vaddq_u32(MSG3, vld1q_u32(&K[0x1c]));
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
MSG2 = vsha256su1q_u32(MSG2, MSG0, MSG1);
/* Rounds 28-31 */
MSG3 = vsha256su0q_u32(MSG3, MSG0);
TMP2 = STATE0;
TMP0 = vaddq_u32(MSG0, vld1q_u32(&K[0x20]));
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP1);
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP1);
MSG3 = vsha256su1q_u32(MSG3, MSG1, MSG2);
/* Rounds 32-35 */
MSG0 = vsha256su0q_u32(MSG0, MSG1);
TMP2 = STATE0;
TMP1 = vaddq_u32(MSG1, vld1q_u32(&K[0x24]));
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
MSG0 = vsha256su1q_u32(MSG0, MSG2, MSG3);
/* Rounds 36-39 */
MSG1 = vsha256su0q_u32(MSG1, MSG2);
TMP2 = STATE0;
TMP0 = vaddq_u32(MSG2, vld1q_u32(&K[0x28]));
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP1);
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP1);
MSG1 = vsha256su1q_u32(MSG1, MSG3, MSG0);
/* Rounds 40-43 */
MSG2 = vsha256su0q_u32(MSG2, MSG3);
TMP2 = STATE0;
TMP1 = vaddq_u32(MSG3, vld1q_u32(&K[0x2c]));
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
MSG2 = vsha256su1q_u32(MSG2, MSG0, MSG1);
/* Rounds 44-47 */
MSG3 = vsha256su0q_u32(MSG3, MSG0);
TMP2 = STATE0;
TMP0 = vaddq_u32(MSG0, vld1q_u32(&K[0x30]));
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP1);
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP1);
MSG3 = vsha256su1q_u32(MSG3, MSG1, MSG2);
/* Rounds 48-51 */
TMP2 = STATE0;
TMP1 = vaddq_u32(MSG1, vld1q_u32(&K[0x34]));
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
/* Rounds 52-55 */
TMP2 = STATE0;
TMP0 = vaddq_u32(MSG2, vld1q_u32(&K[0x38]));
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP1);
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP1);
/* Rounds 56-59 */
TMP2 = STATE0;
TMP1 = vaddq_u32(MSG3, vld1q_u32(&K[0x3c]));
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP0);
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP0);
/* Rounds 60-63 */
TMP2 = STATE0;
STATE0 = vsha256hq_u32(STATE0, STATE1, TMP1);
STATE1 = vsha256h2q_u32(STATE1, TMP2, TMP1);
/* Combine state */
STATE0 = vaddq_u32(STATE0, ABEF_SAVE);
STATE1 = vaddq_u32(STATE1, CDGH_SAVE);
data += 64;
length -= 64;
}
/* Save state */
vst1q_u32(&state[0], STATE0);
vst1q_u32(&state[4], STATE1);
}
int main(int argc, char* argv[])
{
/* empty message with padding */
uint8_t message[64];
memset(message, 0x00, sizeof(message));
message[0] = 0x80;
/* initial state */
uint32_t state[8] = {
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,
0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
};
sha256_process_arm(state, message, sizeof(message));
const uint8_t b1 = (uint8_t)(state[0] >> 24);
const uint8_t b2 = (uint8_t)(state[0] >> 16);
const uint8_t b3 = (uint8_t)(state[0] >> 8);
const uint8_t b4 = (uint8_t)(state[0] >> 0);
const uint8_t b5 = (uint8_t)(state[1] >> 24);
const uint8_t b6 = (uint8_t)(state[1] >> 16);
const uint8_t b7 = (uint8_t)(state[1] >> 8);
const uint8_t b8 = (uint8_t)(state[1] >> 0);
/* e3b0c44298fc1c14... */
printf("SHA256 hash of empty message: ");
printf("%02X%02X%02X%02X%02X%02X%02X%02X...\n",
b1, b2, b3, b4, b5, b6, b7, b8);
int success = ((b1 == 0xE3) && (b2 == 0xB0) && (b3 == 0xC4) && (b4 == 0x42) &&
(b5 == 0x98) && (b6 == 0xFC) && (b7 == 0x1C) && (b8 == 0x14));
if (success)
printf("Success!\n");
else
printf("Failure!\n");
return (success != 0 ? 0 : 1);
}